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Abstract—This work addresses the problem of determining the optimal parameters of a model
predictive controller under conditions of plant parametric uncertainty, unmeasured distur-
bances, and the need to account for the prioritization of control objectives. An algorithm
is proposed for determining the optimal parameters of a model predictive controller, which can
be applied to both newly developed and existing control systems with predictive models, with-
out requiring structural modifications. The algorithm incorporates a criterion that accounts
for plant parametric uncertainty, the magnitude of output variable deviations beyond specified
limits, and the duration of constraint violations. The effectiveness of the proposed algorithm is
demonstrated through its application to an existing controller for a complex distillation column
within a hydrocracking process unit. Using the algorithm, it was possible to achieve the min-
imum permissible initial boiling point of the kerosene fraction withdrawn from the bottom of
the stripping column equipped with a thermosiphon, even under conditions of reduced coolant
flow.
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1. INTRODUCTION

In the oil refining industry, predictive model-based controllers are widely used due to their
ability to control complex, multidimensional processes while operating under constraints on both
control and controlled variables [1, 2]. A major advantage of these controllers is their capacity
to optimize production performance, for example, by maximizing the yield of high-value products
while ensuring compliance with quality specifications and minimizing energy consumption. Due to
the multidimensional nature of process systems, predictive model-based controllers utilize weight
matrices for input and output variables to achieve control objectives. However, these objectives
can be compromised by plant parametric uncertainty, unmeasured external disturbances, or the
use of suboptimal controller parameters [3].

Existing methods for ensuring the fulfillment of control goals can be divided into three groups.
The first group includes methods that significantly change the common standard algorithms for
model predictive controllers (MPCs). These methods are generally not suitable for existing systems,
as they demand significant structural changes, which are often impractical in real-world applica-
tions. Thus, in the paper [4], the correct enforcement of priorities for controlled variables (CVs)
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DETERMINATION OF OPTIMAL PARAMETERS 485

is achieved by determining the optimal changes in manipulated variables (MVs) through a lexico-
graphic optimization approach. This involves sequentially solving multiple optimization problems,
where each subsequent problem includes additional constraints that preserve the solutions obtained
in the previous steps. A similar approach is presented in paper [5], which also addresses the priori-
tization of CV by solving a sequence of optimization problems. The method of taking into account
the priorities of CV is known, taking into account the restrictions on the state of the plant by
solving the problems of mixed-integer programming with additional restrictions that penalize the
violation of the priority of the control objectives [6]. These works address only the prioritization
of CV and do not consider the effects of plant parametric uncertainty or unmeasured disturbances.
The method of handling the parametric uncertainty of the plant involves online identification of
controller model parameters using the recursive least squares method [7]. However, this method
requires persistent excitation of the system in a closed-loop configuration, even in the presence
of unknown and unmeasured external disturbances. It is also important to note that the meth-
ods described above generally entail a high computational burden, primarily due to the repeated
execution of optimization routines.

The second group includes methods for online adjustment of weight matrices of controllers that
do not require significant changes to existing algorithms and are a superstructure over existing
systems. The paper [8] proposes a 2-stage method for taking into account priorities with the ad-
justment of weight matrices online. In the first stage, using the solution of the linear programming
problem, the optimal achievable target values of CV are determined, taking into account the limi-
tations and priorities of the control goals, as well as the optimal weight matrices of the controller.
In the second stage, the controller with updated parameters issues optimal MV increments that
provide tracking of target CV values. The method of adjusting weight matrices using a linear
approximation of the relationship between the predictions of the output variables and the values
of the weight matrices, as well as the subsequent solution of the linear programming problem with
constraints, is known [9]. In this paper, the criterion of the optimization problem is based on the
assessment of the quality of the transient process and does not take into account the uncertainty
and priorities of CV. Paper [10] is devoted to the definition of weight matrices, taking into account
the uncertainty of the plant in online mode by solving the optimization problem based on the
simulation of the controller and aimed at minimizing the CV mismatch and minimizing the MV
increment. Paper [11] considers the application of the particle swarm optimization (PSO) method
for online adjustment of weight matrices of the controller without taking into account the uncer-
tainty of the plant, control goals, and CV priorities; a root-mean-square error is used as a criterion
for the optimization problem.

The third group includes methods for offline determination of weight matrices that do not require
any changes in the parameters of the controller. Thus, in paper [12], using PSO, the weight matrices
of the controller and the dimensions of the prediction and control horizons are determined, taking
into account the uncertainty and priorities of CV in order to minimize CV mismatch. It should be
noted that in this paper, in order to take into account the priorities of CV, it is necessary to set
weights in the PSO criteria, which increase the penalty for violations for higher-priority variables.
It is indicated that it is necessary to accurately select the weights in the criteria in order to obtain
the expected result. However, in this case, the task of determining the weights that ensure the
fulfillment of the priorities of CV is “transferred” from the weight matrices of the controller to the
weights of the scalarized criterion. A similar method [13] for optimizing the weight matrices of
the controller using PSO is known, taking into account the uncertainty, but this method does not
take into account the priorities of CV. The paper [14] proposes a method for optimizing weight
matrices using a genetic algorithm with a criterion based on fuzzy logic, which allows describing
CV priorities and minimizing control error, without determining the weights related to CV in the
genetic algorithm criterion. A method is known for determining weight matrices without taking into
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account the uncertainty and priorities of CV by solving a multi-criteria optimization problem. This
approach seeks a compromise solution — known as a Pareto-optimal point — where improving one
criterion is not possible without degrading the other. The criteria used are CV control error and MV
increment [15]. In a similar work [16], also considering the task of determining the optimal weight
matrices as multi-criteria, CV priorities are taken into account. This approach requires specifying
time constant multipliers for the controller models used in the optimization criteria, ensuring that
higher-priority CVs respond more quickly than lower-priority ones. However, it does not define
the specific difference in the response rate needed to guarantee strict adherence to priority levels.
In [17], the weight matrices of the controller are optimized in order to increase the speed of the
transient process and minimize the CV error. In [17], several operating points are considered when
determining the optimal weights, and the uncertainty of the plant and the priority of CV are not
considered.

In contrast to the references considered above, this paper proposes an algorithm for finding the
ratios of the weight matrices of the controller based on the predictive model, taking into account
the control objectives (CV priority), the parametric uncertainty of the plant, and the unmeasured
disturbances acting through the control channel. Also, the proposed algorithm can be used both
at the stage of synthesis of new MPCs and to adjust the parameters of existing MPCs without the
need to change the structure of the existing control algorithm. In the present paper, it is proposed
to consider the ratios of the weight matrices, since the behavior of the MPCs is mainly determined
by the ratios, and not by the absolute values of the weights [9]. The application of the proposed
algorithm for determining the parameters of the existing MPCs of the complex distillation column
of the hydrocracking process unit is considered. It is demonstrated that the developed algorithm for
determining the optimal weight matrices of the MPC, based on the proposed criterion, enables the
achievement of the minimum permissible initial boiling point of the kerosene fraction and ensures its
maximum recovery from the bottom of the stripping column with a thermosiphon under conditions
of low coolant flow. Additionally, the algorithm provides stable liquid accumulation at the bottom
of the stripping column.

2. PLANT AND CONTROL SYSTEM DESCRIPTION

A complex distillation column of the hydrocracking process unit is considered, designed to
separate the incoming stable hydrogenate into a gasoline fraction, a kerosene fraction, a middle
distillate, a heavy diesel fraction, and a hydrocracking residue. Figure 1 shows a flowsheet diagram
of the considered process unit.

One of the target products of this complex distillation column is the kerosene fraction. In this
regard, the control task under consideration is to maximize the withdrawal of the kerosene fraction
by involving lighter hydrocarbons of the gasoline fraction in it. This redistribution is achieved by
minimizing the initial boiling point (FC IBP) of the kerosene fraction through three key actions:
decreasing the top temperature of column K1, reducing the bottom temperature of column K2,
and increasing the 98% boiling point (FC 98%) of the kerosene fraction by maximizing the flow
rate of the column K2 output to the boundary limit. The bottom temperature of column K2 is
regulated by adjusting the flow rate of coolant through the thermosiphon reboiler (TO2), which
operates without a steam space. The coolant flow rate is controlled by valves FV113 and FV113B.
It is noted that in the area of low coolant flow rates, i.e. when opening the valve FV113 less
than 10%, stable accumulation of liquid in the bottom of column K2 can not be maintained. In
such cases, the control mode is typically switched from automatic to manual by the operator to
restore stability. Based on this operational constraint, the following control objectives are defined
in descending order of priority: (1) ensure stable liquid accumulation in the bottom of column K2,
(2) minimize the FC IBP of the kerosene fraction, and (3) maximize the recovery of the kerosene
fraction.
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Fig. 1. Diagram of the process unit and control system: K1 – complex distillation column; K2 – kerosene
fraction stripping column; K3 – diesel fraction stripping column; K4 – heavy diesel fraction stripping column;
TO1 – gasoline fraction vapor condenser; TO2 – K2 column thermosiphon; TO3 – K3 column thermosiphon;
TO4 – top pumparound stream cooler; TO5 – bottom pumparound stream cooler; FV112 – valve on the top
reflux line of the K1 column; FV113 – valve at the outlet of the TO2 column; FV113B – valve on the TO2
bypass; SS FC IBP – soft sensor (SS) of the initial boiling point of the kerosene fraction; SS FC 98% – SS of
the boiling point of the 98% kerosene fraction.

The control system consisting of nCV controlled and nMV control variables is considered. The
MPC generates values of increments of control actions, taking into account the predicted values of
the output variables by solving the quadratic optimization problem on each time period k:

min
ΔUk

Φk =
1

2
ΔUT

k

(
ST
f QSf +R

)
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ÊT

k QSf
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where M — control horizon; ΔUk =
[
ΔuT

k . . . ΔuT
k+l . . . ΔuT

k+M−1

]T
— the vector of MV

increments on the control horizon M ; Δuk+l = (Δuk+l,1 . . . Δuk+l,r . . . Δuk+l,nMV
)T — the vec-

tor of MV increments for the lth step forward; ΔuLL
k =

(
ΔuLLk,1 . . . ΔuLLk,r . . . ΔuLLk,nMV

)T
and

ΔuHL
k =

(
ΔuHL

k,1 . . . ΔuHL
k,r . . . ΔuHL

k,nMV

)T
— the vectors of lower and upper limits on MV incre-

ments; uLL
k =

(
uLLk,1 . . . uLLk,r . . . uLLk,nMV

)T
and uHL

k =
(
uHL
k,1 . . . uHL

k,r . . . uHL
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...
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— the lower triangular block matrix consisting of diago-

nal unit matrices InMV
; Sf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 0 0 · · · 0
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. . .
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...

...
...

. . .
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— the matrix of plant dynamics

formed from step response (SR) coefficients; sj =
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⎞
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—

the matrix of jth SR coefficients for CV and MV pairs; sj|q,r — the jth SR coefficient for qth
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the vector of MV weights; Êk =
[
eTk|1 . . . eTk|j . . . eTk|P
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— a vector of errors of the pre-

diction of unforced dynamics of all CV from references to the prediction horizon P in time k;

ek|j =
(
ek|1,j . . . ek|q,j . . . ek|nCV ,j

)T
— a vector of errors of the prediction of unforced dynamics

of all CV to the jth step forward in time k; ek|q,j =

⎧⎪⎪⎨
⎪⎪⎩
yHL
q − ỹk|q,j, ỹk|q,j > yHL
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0, yLLq � ỹk|q,j � yHL
q

yLLq − ỹk|q,j, ỹk|q,j < yLLq

— a error

of the prediction of unforced dynamics of the qth CV from the reference for the jth step forward
in time k; yLLq — the lower limit of the qth CV; yHL

q — the upper limit of the qth CV. Constraints
(2) and (3) reflect the given limits for MV increments and limits for MV values.
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3. STATEMENT OF THE PROBLEM

The vector of the optimized parameters W of the controller is as follows:

W =
(
wT

CV wT
MV

)T
= (Q1 . . . Qq . . . QnCV

R1 . . . Rr . . . RnMV
)T .

In the industrial conditions, the models used in the controller may not correspond to the plant; in
this regard, it is assumed that the values of the parameters of the transfer matrix of the plant model
are in a known predetermined range. Therefore, in order to ensure the robustness of the MPC, it
is necessary to determine the weights W , taking into account the change in the parameters of the
plant in the permissible range. Since the number of possible scenarios of variation of parameters
in the range is large, in order to reduce the computational load, a limited number of scenarios NS

are used that reflect the maximum possible deviations of the parameters of the models used in the
controller from the plant.

Determination of tuning parameters Ŵ is carried out by solving the optimization problem with
a given control performance function J :

Ŵ = argmin
W∈R>0

J (W ) .

The following criterion is proposed as a control performance metric:

J =
NS∑
m=1

nCV∑
q=1

⎛
⎝NT∑

k=1

D
(m)
q,k

NT∑
k=1

B
(m)
q,k

⎞
⎠ , (4)

where D
(m)
q,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, yLLq � y

(m)
q,k (W ) � yHL

q∣∣∣yLLq − y
(m)
q,k (W )

∣∣∣ , y
(m)
q,k (W ) < yLLq∣∣∣y(m)

q,k (W )− yHL
q

∣∣∣ , y
(m)
q,k (W ) > yHL

q

— the value of exceeding the permis-

sible boundaries of the qth CV at a time k; NT — the number of simulation time cycles; y
(m)
q,k (W ) —

the value of the qth CV at a time k, obtained when used a controller with parameters W for sce-

nario m; B
(m)
q,k =

⎧⎨
⎩0, yLLq � y

(m)
q,k (W ) � yHL

q

1, y
(m)
q,k (W ) < yLLq ∨ y

(m)
q,k (W ) > yHL

q

— the flag value (discrete value) of

violating the boundaries of the qth CV at a time k obtained for a controller with parameters W
for scenario m.

The proposed criterion (4) takes into account the duration (time) and absolute values of the
output of CVs beyond the boundaries. Uncertainty consideration is implemented by summarizing

the values
∑nCV

q=1

(∑NT
k=1D

(m)
q,k

∑NT
k=1B

(m)
q,k

)
for each of the NS selected scenarios of parameters of

controller model.

4. THE PROPOSED ALGORITHM FOR OBTAINING THE OPTIMAL
PARAMETERS OF THE MPC

Due to the discontinuity of the proposed criterion (4) the problem of finding the optimal pa-
rameters of the controller cannot be solved by quadratic optimization methods. For this reason,
the proposed algorithm for determining the optimal parameters of the controller is based on the
grid search method [18, 19], which assumes that the value of the control performance function is
calculated for all combinations of the values of the optimized variables within the given search space
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and the combination with the lowest value of the criterion is selected. The proposed algorithm is
presented in Table 1.

Table 1. Algorithm for determining the optimal parameters of the MPC

Inputs: Wvars, Φ, J∗

Outputs: Ŵ

1. For v = 1 . . .NW :

2. Set J̃ = 0
3. For m = 1 . . .NS :
4. Reading Y m,v if using [Φ]m
5. Calculating J̃ := J̃ +

∑nCV

q=1

(∑NT

k=1 D
(m)
q,k

∑NT

k=1 B
(m)
q,k

)
6. If J̃ < J∗:
7. Ŵ := [Wvars]v
8. J∗ := J̃

9. Return Ŵ

For the algorithm to work, it is necessary to set the matrix of combinations of possible values
of the controller parameters Wvars:

Wvars =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1,1 . . . Q1,q . . . Q1,nCV
R1,1 . . . R1,r . . . R1,nMV

...
. . .

...
. . .

...
...

. . .
...

. . .
...

Qv,1 . . . Qv,q . . . Qv,nCV
Rv,1 . . . Rv,r . . . Rv,nMV

...
. . .

...
. . .

...
...

. . .
...

. . .
...

QNW ,1 . . . QNW ,q . . . QNW ,nCV
RNW ,1 . . . RNW ,r . . . RNW ,nMV

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where NW — the number of combinations of the parameters of the controller.

In this paper, first-order transfer function with time-delay is used as the transfer functions of
the model of the plant F (s) = g

(τs+1)e
−θs due to its widespread in practice. To take into account

the uncertainty in the algorithm for finding the optimal parameters of the controller, it is necessary
to set the matrix of scenarios for the parameters of the transfer functions used:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1 T1 Θ1
...

...
...

Gm Tm Θm
...

...
...

GNS
TNS

ΘNS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

whereGm =
(
g
(m)
i,j

)
1�i�nCV ,1�j�nMV

— the matrix of the controller’s model gain coefficients for the

scenario m; Tm =
(
τ
(m)
i,j

)
1�i�nCV ,1�j�nMV

— the matrix of the controller’s model time constants

for the scenario m; Θm =
(
θ
(m)
i,j

)
1�i�nCV ,1�j�nMV

— the matrix of the controller’s model delay

values for the scenario m.

During the operation of the algorithm, for each scenario of the parameters of the transfer func-
tions and for each combination of parameters of the controllers, the values of the measured output
vector are read for the entire simulation time:

Y (m,v) =
[
y
(m)
1 ([Wvars]v) . . . y

(m)
k ([Wvars]v) . . . y

(m)
NT

([Wvars]v)
]
,
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where y
(m)
k ([Wvars]v) =

(
y
(m)
1,k ([Wvars]v) . . . y

(m)
q,k ([Wvars]v) . . . y

(m)
nCV ,k ([Wvars]v)

)T
— a vector

of CV values at time k when using the scenario m of transfer functions parameters and a combi-
nation v of controller parameters; [·]v — the vth row of the matrix.

At the beginning of the algorithm J∗, it is necessary to set some large threshold value of the
function so that when using the combination 1 of the controller parameters, the calculated value
of the function J̃ is less than J∗.

5. RESULTS AND DISCUSSION

Table 2 shows the transfer functions of the considered model of the plant.

Since the impact of various unmeasurable disturbances (UD) is possible on a real plant, for
example, a change in the feed composition or a change in the characteristics of the coolant, addi-
tional transfer functions have been introduced into the plant model to take into account possible
UD disturbances. These disturbances are used in the search for optimal parameters W in such a
way as to create conflict situations in terms of priorities, when it is possible to keep only one CV
within the boundaries.

Table 2. Coefficients of the transfer fumctions of the plant model

MV1
TC32

MV2
TC03

MV3
FC16

UD1 UD2 UD3

CV1 FV113
g1,1 = −6 g1,2 = 4 g1,3 = 0.3 g1,4 = 10 g1,5 = 0 g1,6 = 0
τ1,1 = 70 τ1,2 = 70 τ1,3 = 80 τ1,4 = 30 τ1,5 = 0 τ1,6 = 0
θ1,1 = 30 θ1,2 = 10 θ1,3 = 15 θ1,4 = 0 θ1,5 = 0 θ1,6 = 0

CV2 K IBP
g2,1 = 2 g2,2 = 3.5 g2,3 = 0 g2,4 = 0 g2,5 = 10 g2,6 = 0
τ2,1 = 40 τ2,2 = 30 τ2,3 = 0 τ2,4 = 0 τ2,5 = 30 τ2,6 = 0
θ2,1 = 20 θ2,2 = 10 θ2,3 = 0 θ2,4 = 0 θ2,5 = 0 θ2,6 = 0

CV3 K T95
g3,1 = 0.25 g3,2 = 0 g3,3 = 0.55 g3,4 = 0 g3,5 = 0 g3,6 = 10
τ3,1 = 55 τ3,2 = 0 τ3,3 = 15 τ3,4 = 0 τ3,5 = 0 τ3,6 = 30
θ3,1 = 25 θ3,2 = 0 θ3,3 = 10 θ3,4 = 0 θ3,5 = 0 θ3,6 = 0

For the controller UD1, UD2 and UD3 are unmeasurable, therefore it is assumed that the
controller matrices for the case without uncertainty coincide with the fragments of the plant model
matrices:

Ĝ = (gi,j)1�i,j�3 , T̂ = (τi,j)1�i,j�3 , Θ̂ = (θi,j)1�i,j�3 .

In this paper, the uncertainty, considered as a mismatch between the controller and plant parameter
matrices, is set intervalized as a parameter difference of 35%. The parameters of the controller
matrices with uncertainty are described as follows:

G =

⎡
⎢⎣ −8.1 5.4 0.4

2.7 4.7 0
0.3 0 0.7

⎤
⎥⎦ ≈ 1.35Ĝ, G =

⎡
⎢⎣ −3.9 2.6 0.2

1.3 2.3 0
0.2 0 0.4

⎤
⎥⎦ ≈ 0.65Ĝ,

T =

⎡
⎢⎣ 94.5 94.5 108

54 40.5 0
74.3 0 20.3

⎤
⎥⎦ ≈ 1.35T̂ , T =

⎡
⎢⎣ 45.5 45.5 52

26 19.5 0
35.8 0 9.8

⎤
⎥⎦ ≈ 0.65T̂ ,

Θ =

⎡
⎢⎣ 40.5 13.5 20.3

27 13.5 0
33.8 0 13.5

⎤
⎥⎦ ≈ 1.35Θ̂, Θ =

⎡
⎢⎣ 19.5 6.5 9.8

13 6.5 0
16.3 0 6.5

⎤
⎥⎦ ≈ 0.65Θ̂.
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The given scenarios of the parameters of the controller matrices, considered in the search for
optimal parameters Ŵ , are presented in Table 3.

Table 3. Options for model parameters used in the MPC

Index m of the scenario of models used in the controller 1 2 3 4 5 6 7 8 9

Parameters of models used in the controller
Ĝ G Ĝ Ĝ G Ĝ Ĝ G G

T̂ T̂ T T̂ T̂ T T̂ T T

Θ̂ Θ̂ Θ̂ Θ Θ̂ Θ̂ Θ Θ Θ

The plant control simulation time is limited to NT = 300 minutes. The initial values of the plant
inputs and outputs are: CV1 = 116, CV2 = 205, CV3 = 75, MV1 = 12, MV2 = 145, MV3 = 241.
Restrictions on increments for MV1, MV2 and MV3 are set to ±0.25, ±0.25 and ±0.33, re-
spectively. At the same time, the permissible limits for CV1 = [10 . . . 90], CV2 = [135 . . . 145],
CV3 = [235 . . . 245], MV1 = [112,5 . . . 118], MV2 = [203 . . . 210] and MV3 = [75 . . . 85].

The behavior of the specified UDs is defined as follows: from the beginning of the simulation,
UD 1, UD 2 and UD 3 are equal to 0, at time 50, the value of UD 1 changed by −1.5, at time 100,
the value of UD 2 and UD 3 became equal to −1.7 and 1, respectively, at time 150, the values of
UD 2 and UD 3 became equal to 0.

Since the goal is to find the optimal ratios of the weights wCV and wMV , the search space is
set as follows:

Wvars ⊆ N∗,

Wvars =
{
(Q1Q2Q3R1R2R3)

T | Q1 = 8; Q2, Q3 ∈ {1, . . . , 7} ; R1, R2, R3 ∈ {1, . . . , 8}
}
.

In order to reduce the time needed to iterate through possible controller parameters, the search
space is limited to positive integers that are less than or equal to 8, and a fixed weight of the highest
priority CV1 is set to 8. In this case, the number of possible combinations of controller parameters
is NW = 25088. If we increase the search space and limit it to 10, then the number of possible
settings will increase to NW = 81000, that is, a slight expansion of the search space significantly
increases the number of combinations of controller parameters. Due to the fact that the weights
of the lower priority CV are always less than the weight of the more important one, the priorities
of the control goals described earlier are taken into account. It should be noted that there are no
fundamental restrictions preventing the expansion of the search space to the set R>0.

To confirm the efficiency of the proposed criterion, alternative versions of the criterion that
consider either only the magnitude or only the timing of CV violations of acceptable limits are
considered:

JD =
NS∑
m=1

nCV∑
q=1

NT∑
k=1

D
(m)
q,k , (5)

JB =
NS∑
m=1

nCV∑
q=1

NT∑
k=1

B
(m)
q,k . (6)

For a comparative analysis, the optimal MPC parameters were determined for the case without
taking into account the uncertainty (only the scenario m = 1, Table 3): when using the proposed

criterion (4) — W
(J)
opt = (8 2 5 1 1 7)T; by criterion (5) — W

(JD)
opt = (8 3 7 1 1 1)T; by cri-

terion (6) — W
(JB)
opt = (8 1 1 1 1 7)T. Figure 2 shows graphs of the change in CV and MV

when using the found optimal parameters of the controller W
(J)
opt , W

(JD)
opt and W

(JB)
opt .
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Fig. 2. The simulation results with the MPC parameters W
(J)
opt , W

(JD)
opt and W

(JB)
opt .

According to Fig. 2, it can be concluded that criterion JB (6) makes it possible to find controller
parameters that ensure the fulfillment of priorities, but at the same time the boundaries on CV1
and CV2 are largely violated; criterion JD (5) makes it possible to find controller parameters
that provide a minimum overshooting of boundaries on all CVs, but priorities are not always
met; criterion J (4) makes it possible to find such parameters that equally take into account both
priorities and values of CV overshooting.

Table 4 shows the optimal parameters (ratios between weights) found by the criterion J for each
case of models used in the controller.

Table 4. MPC parameters

m̃ scenario index of controller models 1 2 3 4 5 6 7 8 9

J criterion optimal values of con-
troller parameters for scenario m̃ —

W
(J|m̃)
opt

⎛
⎜⎜⎜⎜⎜⎜⎝

8
2
5
1
1
7

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
3
1
8
1
7

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
1
6
4
1
7

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
3
7
1
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
1
7
7
1
7

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
2
7
1
1
6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
1
7
1
8
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
3
1
1
1
7

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

8
1
7
1
8
5

⎞
⎟⎟⎟⎟⎟⎟⎠

Taking into account the uncertainty, the optimal parameters were found according to crite-

rion J (4) W
(J)
opt = (8 2 6 1 1 5)T. Figures 3 and 4 show a comparison of the simulation results

using the controller parameters W
(J)
opt and the same weight ratios Wstd = (1 1 1 1 1 1)T for the

scenarios m̃ = 1 and m̃ = 8, accordingly.

The results presented in Figs. 3 and 4 demonstrate the efficiency of the proposed algorithm for

finding the optimal parameters of the controller. When using the parameters of the controller W
(J)
opt ,
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Fig. 3. Comparison of the simulation results using the controller parameters W
(J)
opt and Wstd

for the scenario m̃ = 1.

Fig. 4. Comparison of the simulation results using the controller parameters W
(J)
opt and Wstd

for the scenario m̃ = 8.
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Fig. 5. Comparison of the output variables of the process unit in industrial conditions before and after
determining the optimal parameters of the controller.

the time of violation of the boundaries for the most priority CV1 decreased by 42.6% (from 185 min.
to 106 min.), 56.2% (from 137 min. to 60 min.) and 29.9% (from 204 min. to 143 min.) for the
scenarios of the controller matrices m̃ = 1 and m̃ = 8, accordingly, in comparison with the use
of Wstd. Figure 5 shows the output variables of an industrial process unit when controlled with

the parameters Wstd and W
(J)
opt , respectively. The presented comparison plot makes it possible to

conclude that the use of the found optimal parameters of the controller made it possible to prevent
a significant violation of the boundaries CV1 — FV113, thereby ensuring a stable accumulation
of liquid in the bottom of the K2 column. Also, the optimal parameters found made it possible
to stabilize the fractional composition of the kerosene fraction taken from the bottom of the K2
column and to achieve the minimum possible initial boiling point of the kerosene fraction.

6. CONCLUSION

The proposed algorithm for determining the weight matrices enables the determination of the
optimal MPC parameters — specifically, the relative weighting factors — under conditions of plant
parametric uncertainty, unmeasured disturbances, and control objective prioritization. For the
model example under consideration with the controller parameters determined using the proposed
algorithm for the highest priority controlled variable, the boundary violation time decreased by an
average of 42.9% in comparison with non-optimal controller parameters. Using the example of an
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industrial MPC of a complex distillation column in a hydrocracking process unit, it demonstrates
that the parameters determined by the proposed algorithm enable stabilization of the fractional
composition and achievement of the minimum possible initial boiling point of the kerosene fraction
withdrawn from the bottom of the stripping column with a thermosiphon, even under low coolant
flow conditions.
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